1 | #=======================================================================
|
2 | # Image filtering by convolution & kernels
|
3 | #
|
4 | # Cesare Brizio, 19 January 2023
|
5 | #
|
6 | # I did something similar around 15 years ago in Visual Basic,
|
7 | # with the heavy burden of a Visual Studio installation.
|
8 | # Thanks to Python, I can provide a working example with in a
|
9 | # much lighter environment.
|
10 | #
|
11 | # The main purpose here is to illustrate the inner mechanics of
|
12 | # a kernel convolution algorithm (see the nested loops) to allow
|
13 | # a better understanding of the underlying logics.
|
14 | #
|
15 | # Inspired by a post by Dario Radečić
|
16 | # (https://medium.com/@radecicdario)
|
17 | # (https://towardsdatascience.com/tensorflow-for-computer-vision-how-to-implement-convolutions-from-scratch-in-python-609158c24f82)
|
18 | # With some help by Mark Setchell
|
19 | # (https://github.com/MarkSetchell)
|
20 | #
|
21 | # "cat image" 1.jpg is available as a part of the
|
22 | # Cats vs. Dogs dataset from Kaggle
|
23 | # (https://www.kaggle.com/datasets/pybear/cats-vs-dogs?select=PetImages)
|
24 | #
|
25 | # Includes kernels from https://stackoverflow.com/questions/58383477/how-to-create-a-python-convolution-kernel
|
26 | # Just a few of the kernels listed are used in the code, feel free
|
27 | # to edit it as needed
|
28 | #=======================================================================
|
29 |
|
30 | import numpy as np
|
31 | from PIL import Image, ImageOps
|
32 | from matplotlib import pyplot as plt
|
33 | from matplotlib import image as mpimg
|
34 | from matplotlib import colors as mcolors
|
35 | from numpy import asarray
|
36 | import cv2
|
37 |
|
38 | def plot_image(img: np.array):
|
39 | plt.figure(figsize=(6, 6), dpi=96)
|
40 | plt.title("Cat Image")
|
41 | plt.xlabel("X pixel scaling")
|
42 | plt.ylabel("Y pixels scaling")
|
43 | #plt.imshow(img, cmap='gray'); # no need for a color map
|
44 | plt.imshow(img);
|
45 | plt.show()
|
46 |
|
47 |
|
48 | def plot_two_images(img1: np.array, img2: np.array, imm_name):
|
49 | _, ax = plt.subplots(1, 2, figsize=(12, 6), dpi=96)
|
50 | plt.title(imm_name)
|
51 | plt.xlabel("X pixel scaling")
|
52 | plt.ylabel("Y pixels scaling")
|
53 | #ax[0].imshow(img1, cmap='gray')
|
54 | #ax[1].imshow(img2, cmap='gray');
|
55 | ax[0].imshow(img1)
|
56 | ax[1].imshow(img2);
|
57 | plt.show()
|
58 |
|
59 | sharpen = np.array([
|
60 | [0, -1, 0],
|
61 | [-1, 5, -1],
|
62 | [0, -1, 0]
|
63 | ])
|
64 |
|
65 | blur = np.array([
|
66 | [0.0625, 0.125, 0.0625],
|
67 | [0.125, 0.25, 0.125],
|
68 | [0.0625, 0.125, 0.0625]
|
69 | ])
|
70 |
|
71 | outline = np.array([
|
72 | [-1, -1, -1],
|
73 | [-1, 8, -1],
|
74 | [-1, -1, -1]
|
75 | ])
|
76 |
|
77 | laplacian = np.array([
|
78 | [0, 1, 0],
|
79 | [1, -4, 1],
|
80 | [0, 1, 0]
|
81 | ])
|
82 |
|
83 | emboss = np.array([
|
84 | [-2, -1, 0],
|
85 | [-1, 1, 1],
|
86 | [0, 1, 2]
|
87 | ])
|
88 |
|
89 | bottom_sobel = np.array([
|
90 | [-1, -2, -1],
|
91 | [0, 0, 0],
|
92 | [1, 2, 1]
|
93 | ])
|
94 |
|
95 | left_sobel = np.array([
|
96 | [1, 0, -1],
|
97 | [2, 0, -2],
|
98 | [1, 0, -1]
|
99 | ])
|
100 |
|
101 | right_sobel = np.array([
|
102 | [-1, 0, 1],
|
103 | [-2, 0, 2],
|
104 | [-1, 0, 1]
|
105 | ])
|
106 |
|
107 | top_sobel = np.array([
|
108 | [1, 2, 1],
|
109 | [0, 0, 0],
|
110 | [-1, -2, -1]
|
111 | ])
|
112 |
|
113 |
|
114 | def calculate_target_size(img_size: int, kernel_size: int) -> int:
|
115 | print(f'calculate_target_size({img_size}, {img_size})')
|
116 | num_pixels = 0
|
117 |
|
118 | # From 0 up to img size (if img size = 224, then up to 223)
|
119 | for i in range(img_size):
|
120 | # Add the kernel size (let's say 3) to the current i
|
121 | added = i + kernel_size
|
122 | # It must be lower than the image size
|
123 | if added <= img_size:
|
124 | # Increment if so
|
125 | num_pixels += 1
|
126 |
|
127 | print(f'calculate_target_size returns {num_pixels}')
|
128 | return num_pixels
|
129 |
|
130 | def convolve(img: np.array, kernel: np.array) -> np.array:
|
131 | # Assuming a rectangular image
|
132 | tgt_size = calculate_target_size(
|
133 | img_size=img.shape[0],
|
134 | kernel_size=kernel.shape[0]
|
135 | )
|
136 | # To simplify things
|
137 | k = kernel.shape[0]
|
138 |
|
139 | # This will hold our 3-channel RGB result
|
140 | convolved = np.zeros(shape=(tgt_size, tgt_size,3))
|
141 |
|
142 | # Iterate over the rows
|
143 | for i in range(tgt_size):
|
144 | # Iterate over the columns
|
145 | for j in range(tgt_size):
|
146 | # Iterate over channels
|
147 | for c in range(3):
|
148 | mat = img[i:i+k, j:j+k, c]
|
149 | # Apply the convolution - element-wise multiplication and summation of the result
|
150 | # Store the result to i-th row and j-th column of our convolved_img array
|
151 | convolved[i, j, c] = np.sum(np.multiply(mat, kernel))
|
152 |
|
153 | # Clip result array to range 0..255 and make into uint8
|
154 | result = np.clip(convolved, 0, 255).astype(np.uint8)
|
155 | print(f'{convolved.dtype}, {convolved.shape}')
|
156 | print(f'Rmax: {np.max(result[...,0])}, Rmin: {np.min(result[...,0])}')
|
157 | print(f'Gmax: {np.max(result[...,1])}, Gmin: {np.min(result[...,1])}')
|
158 | print(f'Bmax: {np.max(result[...,2])}, Bmin: {np.min(result[...,2])}')
|
159 |
|
160 | return result
|
161 |
|
162 | # ----------------------------------------------------
|
163 | # The following is currently useless and is kept for
|
164 | # reference purposes (np.clip takes care of clipping)
|
165 | # ----------------------------------------------------
|
166 | #def negative_to_zero(img: np.array) -> np.array:
|
167 | # img = img.copy()
|
168 | # img[img < 0] = 0
|
169 | # return img
|
170 |
|
171 | #===========================================================
|
172 | # Open image as PIL Image and make Numpy array version too
|
173 | #===========================================================
|
174 | pI = Image.open('C:/Conv_Python/images/1.jpg')
|
175 | img = np.array(pI)
|
176 |
|
177 | plot_image(img=img)
|
178 | #------------------> don't use a cmap such as cmap='gray_r' as 3rd parameter
|
179 | plt.imsave(fname='_original.png', arr=img, format='png')
|
180 |
|
181 | #===================================
|
182 | # S H A R P E N E D
|
183 | #===================================
|
184 | Curr_Title="Cat Image - Sharpened"
|
185 | img_sharpened = convolve(img=img, kernel=sharpen)
|
186 | plt.imsave(fname='_sharpened.png', arr=img_sharpened, format='png')
|
187 |
|
188 | plot_two_images(
|
189 | img1=img,
|
190 | img2=img_sharpened,
|
191 | imm_name=Curr_Title
|
192 | )
|
193 |
|
194 | #===================================
|
195 | # S H A R P E N E D
|
196 | # vs.
|
197 | # SHARPENED AND NORMALIZED
|
198 | #===================================
|
199 | # Now useless, images are normalized in the
|
200 | # convolve() function
|
201 | #
|
202 | # NORMALIZE
|
203 | #img_shar_nor = cv2.normalize(img_sharpened, None, 0, 255, cv2.NORM_MINMAX)
|
204 |
|
205 | #plot_two_images(
|
206 | # img1=img_sharpened,
|
207 | # img2=img_shar_nor
|
208 | #)
|
209 |
|
210 | #===================================
|
211 | # B L U R R E D
|
212 | #===================================
|
213 | Curr_Title="Cat Image - Blurred"
|
214 | img_blurred = convolve(img=img, kernel=blur)
|
215 | plt.imsave(fname='_blurred.png', arr=img_blurred, format='png')
|
216 |
|
217 | plot_two_images(
|
218 | img1=img,
|
219 | img2=img_blurred,
|
220 | imm_name=Curr_Title
|
221 | )
|
222 |
|
223 | #===================================
|
224 | # O U T L I N E D
|
225 | #===================================
|
226 | Curr_Title="Cat Image - Outlined"
|
227 | img_outlined = convolve(img=img, kernel=outline)
|
228 | #plt.imsave(fname='_outlined.png', arr=img_outlined, cmap='gray_r', format='png')
|
229 | plt.imsave(fname='_outlined.png', arr=img_outlined, format='png')
|
230 |
|
231 | plot_two_images(
|
232 | img1=img,
|
233 | img2=img_outlined,
|
234 | imm_name=Curr_Title
|
235 | )
|
236 |
|
237 | #===================================
|
238 | # NEG_TO_ZERO OUTLINED
|
239 | #===================================
|
240 | #img_neg_to_z_OUT = negative_to_zero(img=img_outlined)
|
241 | #plt.imsave(fname='_neg_to_z_OUT.png', arr=img_neg_to_z_OUT, format='png')
|
242 | #
|
243 | #plot_two_images(
|
244 | # img1=img,
|
245 | # img2=img_neg_to_z_OUT
|
246 | #)
|