Microscope Z-Stage knob plus Keyboard Emulation controlled by serial dialogue
Click on the pictures to enlarge


ATTENZIONE!!! RICHIEDE ARDUINO UNO R4 MINIMA O ALTRA VERSIONE COMPATIBILE CON LIBRERIA KEYBOARD

ATTENTION!!! REQUIRES ARDUINO UNO R4 MINIMA OR OTHER VERSION COMPATIBLE WITH KEYBOARD LIBRARY

VEDI Miglioramento del sistema di accoppiamento meccanico

SEE Improvement of the mechanical coupling system

VEDI Microscope Z-Stage knob controlled by serial dialogue

SEE Microscope Z-Stage knob controlled by serial dialogue

Due importanti sviluppi

La precedente realizzazione (Microscope Z-Stage knob controlled by serial dialogue) è stata radicalmente migliorata in diversi aspetti, che la portano a essere un'alternativa a una slitta micrometrica motorizzata: rispetto a prodotti come quelli MJKZZ, che però non sempre sono integrabili con applicazzioni di cattura immagini basate su personal computer.
  1. la struttura del codice ora evidenzia con maggiore chiarezza come ogni ciclo del loop provochi l'avanzamento di un singolo step, e rende chiaro come si possano testare condizioni quali l'attivazione dello stepper e il raggiungimento della posizione-bersaglio;
  2. il programma ora pone due domande sia all'atto dell'esecuzione iniziale, sia quando il numero desiderato di rotazioni viene ultimato:
    • che tipo di rotazione si desidera;
    • quante volte va ripetuta la rotazione selezionata.
  3. al completamento di ciascuna rotazione, il programma emula la pressione del carattere scelto (nell'esempio, F1) sulla tastiera.
In questo modo, oltre a diminuire le vibrazioni sul piano di lavoro causate dalla pressione dei tasti fisici, si può riuscire a attivare la cattura di un'immagine sul software in primo piano dopo ogni spostamento incrementale, emulando il comportamento di slitte micrometriche automatizzate con connessione USB ai dispositivi di ripresa. Ad esempio, è possibile catturare immagini con DeltaPix InSight o con programmi di tethering a corpi macchina collegati al computer via USB. Il programma si lancia con la IDE di Arduino e, appena avviato, si deve portare in primo piano sullo schermo l'applicazione di cattura immagini, che riceverà le pressioni emulate del tasto di cattura immagini. Esaurito il numero di rotazioni impostato, l'applicazione Arduino chiede nuovamente quante rotazioni si desiderino, e di quale tipo.

Two important developments

The previous creation (Microscope Z-Stage knob controlled by serial dialogue)has been radically improved in various aspects, which lead it to be an alternative to a motorized micrometric slide: compared to products such as the MJKZZ ones, which however cannot always be integrated with personal computer-based image capture applications.
  1. the structure of the code now highlights more clearly how each cycle of the loop causes the advancement of a single step, and makes it clear how conditions such as the activation of the stepper and the achievement of the target position can be tested;
  2. the program now asks two questions both upon initial execution and when the desired number of rotations is completed:
    • what type of rotation you want;
    • how many times the selected rotation must be repeated.
  3. upon completion of each rotation, the program emulates pressing the chosen character (in the example, F1) on the keyboard.
In this way, in addition to decreasing vibrations on the work surface caused by physical keypresses, it is possible to activate the capture of an image on the software in the foreground after each incremental movement, emulating the behavior of automated micrometric slides with USB connection to the shooting devices. For example, you can capture images with DeltaPix InSight or with tethering programs to camera bodies connected to your computer via USB. The program is launched with the Arduino IDE and, as soon as it is started, one must bring in foreground the image capture application screen, that will receive the emulated image-capture keystrokes. Once the set number of rotations has been exhausted, the Arduino application asks again how many rotations are desired, and of what type.

Source code



 
/*
 
Stepper-based microscope Z-stage
 
Circuit and comments: 
See http://www.cesarebrizio.it/Arduino/Z-Stage.html
Circuit is as illustrated here:
https://www.tdegypt.com/wp-content/uploads/2017/08/stepper-motor-wiring.png
the only exception being that the sketch uses digital outputs 4 - 5 - 6 - 7
while the Fritzing diagram uses digital outputs 8 - 9 - 10 - 11
 
*/
 
/*-----( Import needed libraries )-----*/
#include <AccelStepper.h>
#include <Keyboard.h>  // Needed only if keyboard stroke is to be sent (REQUIRES Arduino UNO R4 Minima)
 
/*-----( Declare Constants and Pin Numbers )-----*/
/* NEVER PUT ; AFTER A #define statement!!!! */
// motor pins
#define motorPin1 4           // Blue   - 28BYJ-48 pin 1
#define motorPin2 5           // Pink   - 28BYJ-48 pin 2
#define motorPin3 6           // Yellow - 28BYJ-48 pin 3
#define motorPin4 7           // Orange - 28BYJ-48 pin 4 \
                              // Red    - 28BYJ-48 pin 5 (VCC) \
                              // Blue   - 28BYJ-48 pin GND
#define STEPS_PER_TURN 2048   // number of steps in 360° 
#define STEPS_PER_FOUR 22     // number of steps in 4° 
#define STEPS_PER_FIVE 28     // number of steps in 5° 
#define STEPS_PER_TEN 57      // number of steps in 10° 
#define STEPS_PER_TWENTY 114  // number of steps in 20° 
#define STEPS_PER_FORTY 228   // number of steps in 40° 
 
int motorSpeed = 500;   // High speeds (800 and above) may cause erratic behavior in 28BYJ-48
int motorAccel = 400;   // As above: better avoiding extreme accelerations
int myPos = 0;          // will be used to define a starting point for 360°  rotations
int LeftTurnUp = 0;     // Couple of flags to determine rotation direction
int RightTurnDown = 0;  // Couple of flags to determine rotation direction
int Continuous = 2;     // used below to discriminate single rotation commands
// Continuous will be set to 1 or 0 only when a valid command character will be received
//int incomingByte = 0;  // for incoming serial data
int STEPS_TO_DO = 0;   // to allocate the number of steps needed to perform the required rotation
 
int RotationsRequired = 0;   // How many rotations of the desired type are required?
int RotationsDone = 0;       // How many rotations of the desired type were completed?
int RotationsRemaining = 0;  // How many rotations remain to do?
int delay_between_rotations = 2000; //milliseconds of delay between consecutive rotations
 
bool active = false; // is the stepper active?
 
/*-----( Objects for stepper control )-----*/
// Set up the stepper as 4 wire bipolar on pin 4,5,6,7
// NOTE: The sequence 1-3-2-4 is required for proper sequencing of 28BYJ48
AccelStepper stepper(4, motorPin1, motorPin3, motorPin2, motorPin4);
 
 
void setup() {
  Serial.begin(9600);
  stepper.setMinPulseWidth(20);  // Advisable setting to avoid that pulses from Arduino are too quick to be decoded
  stepper.setMaxSpeed(motorSpeed);
  stepper.setSpeed(motorSpeed);
  stepper.setAcceleration(motorAccel);
  // the following two lines reset "step zero" to the current position
  stepper.setCurrentPosition(stepper.currentPosition());
  stepper.runToPosition();
  // The following is required to initialize the communication with the keyboard
  Keyboard.begin();  
  // I should ask the user what he wants to do
  askUser();   
}
 
void loop() {
  stepper.run();
 
  // ==================================================
  // Let's check whether:
  // A) the stepper is active;
  // B) the stepper is still running.
  // ==================================================
  if (active && (stepper.distanceToGo() == 0)) {
    //Serial.println("stepper.distanceToGo() = 0");
    // the rotation was completed
    // Send F1 to the keyboard
    Keyboard.press(KEY_F1);
    delay(100);
    Keyboard.releaseAll();
    // Delay before the next rotation
    delay(delay_between_rotations);
    Serial.print("Sent F1 Keystroke and waited ");
    Serial.print(delay_between_rotations);
    Serial.println(" milliseconds.");
    // Increase the count of rotations done
    RotationsDone = RotationsDone + 1;
    // Check how many rotations remain to do
    RotationsRemaining = RotationsRequired - RotationsDone;
    if (RotationsRemaining > 0) {
        Serial.print("Starting rotation number ");
        Serial.print(RotationsDone + 1);
        Serial.print(" of ");
        Serial.println(RotationsRequired); 
      // reset current position
      myPos = stepper.currentPosition();
      // start a new rotation of the same kind as the last one
      if (LeftTurnUp == 1)  //left turn
      {
        stepper.moveTo(myPos + STEPS_TO_DO);  // number of  steps in 5, 10, 20 or 360° 
      }
      if (RightTurnDown == 1)  //right turn
      {
        stepper.moveTo(myPos - STEPS_TO_DO);  // number of  steps in 5, 10, 20 or 360° 
      }
 
      // I'm activating the stepper and I should 
      // begin checking whether it has completed
      // its required rotations
      active = true; 
    }
    else {
      // I'm inactivating the stepper and I should 
      // stop checking whether it has completed
      // its required rotations
      active = false;  
      // I should ask the user what he wants to do
      askUser();        
    }
  }
}
 
void askUser() {
 
  // Delay to ensure that the serial port has the time to initialize correctly
  delay(delay_between_rotations);
  // ================================================================
  // The user is asked for A NUMBER OF REQUIRED ROTATIONS 
  // AND THE KIND OF ROTATIONS REQUIRED
  // ================================================================
 
  Serial.println("===============================");
  Serial.println("How many rotations are desired?");
 
  while (Serial.available() == 0) {
  }
 
  RotationsRequired = Serial.parseInt();
  while(Serial.available()) Serial.read(); // Empty the seerial buffer from any remaining character
 
  RotationsDone = 0;                       // For now, no rotations has been completed
  RotationsRemaining = RotationsRequired;  // For now, no rotations has been completed
 
  Serial.print("You required ");
  Serial.print(RotationsRequired);
  Serial.println(" rotations.");
  Serial.println("   ");
  Serial.println("Which kind of rotation is required ?");
  Serial.println("Available commands:");
  Serial.println("====> 360°  Rotation");
  Serial.println("o = 360°  clockwise rotation");
  Serial.println("O = 360°  counter-clockwise rotation");
  Serial.println("====> Rotation by small increments");
  Serial.println("k = rotate 4°  clockwise");
  Serial.println("K = rotate 4°  counter-clockwise");
  Serial.println("f = rotate 5°  clockwise");
  Serial.println("F = rotate 5°  counter-clockwise");
  Serial.println("t = rotate 10°  clockwise");
  Serial.println("T = rotate 10°  counter-clockwise");
  Serial.println("w = rotate 20°  clockwise");
  Serial.println("W = rotate 20°  counter-clockwise");
  Serial.println("q = rotate 40°  clockwise");
  Serial.println("Q = rotate 40°  counter-clockwise");
 
 
  while (Serial.available() == 0) {
  }
 
  String incomingByte = Serial.readString();
  while(Serial.available()) Serial.read(); // Empty the seerial buffer from any remaining character
 
 
    Serial.print("Received ");
    Serial.println(incomingByte);
 
 
    if (incomingByte == "o") {
      Serial.println("received «o» - activating single clockwise rotation");
      // The following couple of flags determines rotation direction
      LeftTurnUp = 0;
      RightTurnDown = 1;
      STEPS_TO_DO = STEPS_PER_TURN;
    }
 
    if (incomingByte == "O") {
      Serial.println("received «O» - activating single counter-clockwise rotation");
      // The following couple of flags determines rotation direction
      RightTurnDown = 0;
      LeftTurnUp = 1;
      STEPS_TO_DO = STEPS_PER_TURN;
    }
 
    if (incomingByte == "k") {
      Serial.println("received «k» - activating 4°  clockwise rotation");
      // The following couple of flags determines rotation direction
      LeftTurnUp = 0;
      RightTurnDown = 1;
      STEPS_TO_DO = STEPS_PER_FOUR;
    }
 
    if (incomingByte == "K") {
      Serial.println("received «K» - activating 4°  counter-clockwise rotation");
      // The following couple of flags determines rotation direction
      RightTurnDown = 0;
      LeftTurnUp = 1;
      STEPS_TO_DO = STEPS_PER_FOUR;
    }
 
    if (incomingByte == "f") {
      Serial.println("received «f» - activating 5°  clockwise rotation");
      // The following couple of flags determines rotation direction
      LeftTurnUp = 0;
      RightTurnDown = 1;
      STEPS_TO_DO = STEPS_PER_FIVE;
    }
 
    if (incomingByte == "F") {
      Serial.println("received «F» - activating 5°  counter-clockwise rotation");
      // The following couple of flags determines rotation direction
      RightTurnDown = 0;
      LeftTurnUp = 1;
      STEPS_TO_DO = STEPS_PER_FIVE;
    }
 
    if (incomingByte == "t") {
      Serial.println("received «t» - activating 10°  clockwise rotation");
      // The following couple of flags determines rotation direction
      LeftTurnUp = 0;
      RightTurnDown = 1;
      STEPS_TO_DO = STEPS_PER_TEN;
    }
 
    if (incomingByte == "T") {
      Serial.println("received «T» - activating 10°  counter-clockwise rotation");
      // The following couple of flags determines rotation direction
      RightTurnDown = 0;
      LeftTurnUp = 1;
      STEPS_TO_DO = STEPS_PER_TEN;
    }
 
    if (incomingByte == "w") {
      Serial.println("received «w» - activating 20°  clockwise rotation");
      // The following couple of flags determines rotation direction
      LeftTurnUp = 0;
      RightTurnDown = 1;
      STEPS_TO_DO = STEPS_PER_TWENTY;
    }
 
    if (incomingByte == "W") {
      Serial.println("received «W» - activating 20°  counter-clockwise rotation");
      // The following couple of flags determines rotation direction
      RightTurnDown = 0;
      LeftTurnUp = 1;
      STEPS_TO_DO = STEPS_PER_TWENTY;
    }
 
    if (incomingByte == "q") {
      Serial.println("received «q» - activating 40°  clockwise rotation");
      // The following couple of flags determines rotation direction
      LeftTurnUp = 0;
      RightTurnDown = 1;
      STEPS_TO_DO = STEPS_PER_FORTY;
    }
 
    if (incomingByte == "Q") {
      Serial.println("received «Q» - activating 40°  counter-clockwise rotation");
      // The following couple of flags determines rotation direction
      RightTurnDown = 0;
      LeftTurnUp = 1;
      STEPS_TO_DO = STEPS_PER_FORTY;
    }
 
    // The two lines that follow allow to send commands in any sequence:
    // before execution, a quick stop is performed
    stepper.stop();                                         // Stop as fast as possible: sets new target
    stepper.runToPosition();                                // Now stopped after quickstop
    stepper.setCurrentPosition(stepper.currentPosition());  // Set step 0 "here"
    stepper.setSpeed(motorSpeed);                           // Previous commands have reset the speed
 
    Serial.print("Starting rotation number 1 of ");
    Serial.println(RotationsRequired); 
 
    // I store my current position as starting point of the rotation
    myPos = stepper.currentPosition();
 
    if (LeftTurnUp == 1)  //left turn
    {
      stepper.moveTo(myPos + STEPS_TO_DO);  // number of  steps in 5, 10, 20 or 360° 
    }
 
    if (RightTurnDown == 1)  //right turn
    {
      stepper.moveTo(myPos - STEPS_TO_DO);  // number of  steps in 5, 10, 20 or 360° 
    }
 
  // I'm activating the stepper and I should 
  // begin checking whether it has completed
  // its required rotations
  active = true; 
}